Abstract

Kinetic and binding studies were performed with a purified microsomal cytochrome P-450 from neonatal pig testis, the C21 side chain cleavage system (17 alpha-hydroxylase/C17,20-lyase). Binding of substrates and inhibitors was measured by spectral methods and by equilibrium dialysis. Kinetic data revealed that pregnenolone inhibits lyase activity with 17 alpha-hydroxypregnenolone as substrate (Ki, 0.3 microM) and that progesterone inhibits lyase activity with 17 alpha-hydroxyprogesterone (Ki, 1.5 microM); inhibition is competitive in both cases. Binding and kinetic studies revealed that Km, Ks, and Kd (Michaelis constant and dissociation constants determined by spectral and dialysis methods, respectively) are all considerably lower for the delta 5 substrates than for the corresponding delta 4 compounds. Equilibrium dialysis shows that there is a single binding site for the substrates of both activities (hydroxylase and lyase). Spectral studies revealed a lag in the development of the spectral shift produced by the addition of steroids and gave results compatible with a single active site, although this spectral evidence is not conclusive by itself. It is concluded that (i) the powerful forward competitive inhibition by pregnenolone and progesterone may be important in regulating synthesis of androgens in vivo; (ii) the porcine enzyme uses delta 5 substrates in preference to delta 4 substrates, thereby accounting for extensive use of the delta 5 pathway by pig testis in vivo; (iii) the evidence presented suggests one active site for both hydroxylase and lyase activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.