Abstract

*Note: Mol2Net conference is associated to different MDPI journals special issues guest edited by Mol2Net Conference Committee members. This is an strategy to increase the online post-publication visibility of papers and conference, promote post-publication brainstorming discussion, and increase authors feedback. This association implies that our conference perform post-publication indexing of selected papers already published in MDPI journals with the consent of the issue editors. We publish free-of-cost these post-publication summaries. They include a shortened title, corresponding author info, and paper cover pdf file. The cover pdf file contains paper first page with all authors, abstract, full reference , and link to original papers.Reference: This is a Mol2Net conference post-publication cover for a paper published in the special issue Complex Networks, Bio-Molecular Systems, and Machine Learning, Edited by: Dr. H González-Díaz. Visit the link to see original paper. Reference: Int. J. Mol. Sci. 2021, 22(19), 10518; https://doi.org/10.3390/ijms221910518 Abstract. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for the coronavirus disease of 2019 (COVID-19) pandemic, has affected and continues to affect millions of people across the world. Patients with essential arterial hypertension and renal complications are at particular risk of the fatal course of this infection. In our study, we have modeled the selected processes in a patient with essential hypertension and chronic kidney disease (CKD) suffering from COVID-19, emphasizing the function of the renin-angiotensin-aldosterone (RAA) system. The model has been built in the language of Petri nets theory. Using the systems approach, we have analyzed how COVID-19 may affect the studied organism, and we have checked whether the administration of selected anti-hypertensive drugs (angiotensin-converting enzyme inhibitors (ACEIs) and/or angiotensin receptor blockers (ARBs)) may impact the severity of the infection. Besides, we have assessed whether these drugs effectively lower blood pressure in the case of SARS-CoV-2 infection affecting essential hypertensive patients. Our research has shown that neither the ACEIs nor the ARBs worsens the course infection. However, when assessing the treatment of hypertension in the active SARS-CoV-2 infection, we have observed that ARBs might not effectively reduce blood pressure; they may even have the slightly opposite effect. On the other hand, we have confirmed the effectiveness of arterial hypertension treatment in patients receiving ACEIs. Moreover, we have found that the simultaneous use of ARBs and ACEIs averages the effects of taking both drugs, thus leading to only a slight decrease in blood pressure. We are a way from suggesting that ARBs in all hypertensive patients with COVID-19 are ineffective, but we have shown that research in this area should still be continued.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.