Abstract

Verification and test are critical phases in the development of any hardware or software system. This article focuses on black box testing of the control part of hardware and software systems. Black box testing involves specification, test generation, and fault coverage. Finite state machines (FSMs) are commonly used for specifying controllers. FSMs may have shortcomings in modeling complex systems. With the introduction of X-machines, complex systems can be modeled at higher levels of abstraction. An X-machine can be converted into an FSM while preserving the level of abstraction. The fault coverage of a test sequence for an FSM specification provides a confidence level. We propose a fault coverage metric for an FSM specification based on the transition fault model, and using this metric, we derive the coverage of a test sequence. The article also presents a method which generates short test sequences that meet a specific coverage level and then extends this metric to determine the coverage of a test sequence for an FSM driven by an FSM network. We applied our FSM verification technique to a real-life FSM, namely, the fibre channel arbitrated loop port state machine, used in the field of storage area networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.