Abstract

In order to provide high performance with low power consumption, many multicore chips employ dynamic voltage scaling and voltage islands that operate at multiple power-supply voltage levels. Effective defect screening for such chips requires test applications at different operating voltages, which leads to higher test time and test cost compared to systems-on-a-chip (SoCs), which operate at only a single voltage level. We propose test scheduling techniques to minimize the testing time for multicore chips when each core is tested at multiple voltage levels and when it is tested for state retention when the core switches between two voltage levels. The proposed techniques include exact optimization based on integer linear programming and fast heuristic methods. Experimental results for two test-case SoCs from the industry highlight the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.