Abstract

PurposeModerate-to-high correlations have been reported between the [11C]PiB PET-derived relative tracer delivery rate R1 and relative CBF as measured using [15O]H2O PET, supporting its use as a proxy of relative CBF. As longitudinal PET studies become more common for measuring treatment efficacy or disease progression, it is important to know the intrinsic variability of R1. The purpose of the present study was to determine this through a retrospective data analysis.ProceduresTest-retest data belonging to twelve participants, who underwent two 90 min [11C]PiB PET scans, were retrospectively included. The voxel-based implementation of the two-step simplified reference tissue model with cerebellar grey matter as reference tissue was used to compute R1 images. Next, test-retest variability was calculated, and test and retest R1 measures were compared using linear mixed effect models and a Bland-Altman analysis.ResultsTest-retest variability was low across regions (max. 5.8 %), and test and retest measures showed high, significant correlations (R2=0.92, slope=0.98) and a negligible bias (0.69±3.07 %).ConclusionsIn conclusion, the high precision of [11C]PiB R1 suggests suitable applicability for cross-sectional and longitudinal studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.