Abstract
A new type of labyrinth gas seal for damping vibration and whirl, called the TAMSEAL, has been evaluated in both nonrotating and rotating tests at Texas A&M University. Test results of the prototype, along with comparison tests of a conventional labyrinth seal, show up to 100 times more direct damping than the conventional bladed seal. The new design also has a feature that blocks swirl of the working fluid, which is known to be rotordynamically destabilizing in machines with conventional seals. Coastdown tests of the new seal were conducted at various pressures on a rotordynamic test apparatus with a critical speed at 4000 rpm and compared with identical testing of a conventional labyrinth seal. Rap tests of both seals were also conducted to measure the logarithmic decrement of free vibration, and the leakage of both seals was measured. Test results show large reductions in peak vibration at the critical speed in all cases, with the critical speed being completely eliminated by the TAMSEAL at some pressure drop conditions. The leakage rate of the tested TAMSEAL is higher than the conventional seal at the same clearance, but the large reductions in vibration and whirl amplitudes suggest that the TAMSEAL could be operated with smaller clearances than conventional labyrinth seals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.