Abstract

The problem of test generation for path delay faults in synchronous sequential circuits is addressed. In existing testing methods, a single fast clock cycle is used to activate path delay faults and a fault is said to be detected only if the fault free response is different from the faulty response at a single output and at a specified time unit in the test sequence. We refer to these methods as single fast clock cycle and single observation time testing methods. We show that testable faults may exist, which are untestable using a single fast clock cycle and a single observation time. Such faults are testable when multiple fast clock cycles and/or multiple observation times are used. A test generation procedure is given that uses multiple fast clock cycles and multiple observation times. Experimental results are presented on MCNC synthesis benchmarks to demonstrate the effectiveness of the proposed strategy in increasing the fault coverage and reducing the test length. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.