Abstract

Reed-Muller coefficients are used to generate a test-pattern selection procedure for detecting single stuck-at faults. This procedure is based on the heuristics deduced from the way in which the spectral coefficients are affected by such faults. The changes that the spectral coefficients undergo are also compared with the fault models used most frequently to model defects in combinational circuits. The proposed pattern-generating procedure does not need a simulation of the circuit for each of the possible stuck-at faults, and its complexity is proportional to the number of gates in the circuit. The proportionality constant increases exponentially as the number of inputs in the circuit increases. To evaluate the performance of the proposed method, its application to some benchmark circuits, including the ALU 74181, is presented. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.