Abstract

In the present study, we investigate the dynamics of test particles around a Schwarzschild black hole surrounded by quintessence and immersed in a scalar string cloud field. We start our study by defining the possible values of the quintessence and cloud of string parameters corresponding to the existence of the black hole horizon for fixed values of the parameters of the equation of state for dark energy. We also study the effects of the effective potential on the circular motion, energy, and angular momentum of the test particles together with the innermost stable circular orbits (ISCOs). We investigate the fundamental frequencies in the particle oscillations along stable circular orbits. We relate the stability of the orbits to the Lyapunov exponent, and the chaotic behavior is studied graphically. Finally, we apply the fundamental frequencies to describe quasiperiodic oscillations (QPOs) and find that, in the presence of both fields, low-frequency twin-peak QPOs are not observed. In addition, we obtain the constraint values for the string cloud parameter and mass of the black hole candidates located in the center of the microquasars GRO J1655-40 and GRS 1915+105 as well as the Milky Way galaxy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call