Abstract

Ionospheric modulation can artificially trigger ELF/VLF whistler waves, which can leak into the inner magnetosphere and contribute to resonant interactions with energetic electrons. Combining the ray tracing method and test particle simulations, we investigate the propagation of these artificially generated ELF/VLF waves through the high ionosphere into the inner magnetosphere, and evaluate the subsequent effects of resonant scattering energetic electrons near the heart of the outer radiation belt. The results show that the artificially triggered ELF/VLF waves become highly oblique in the magnetosphere and their spatial extent of L shell and magnetic latitude can be significantly controlled by the initial launch latitude. Corresponding to the principal first-order resonance, the energetic electrons from ~ 100 keV to 3 MeV can resonate with the artificial VLF waves with frequency above 10 kHz in the inner radiation belt, while in the outer radiation belt these hazardous electrons can resonate with ELF waves from ~100 Hz to 1 kHz. At L=4.5 as the focus in this study, the artificial ELF waves can resonate with 1 MeV electron at the harmonics N=-1, 1, 2. In contrast, the Landau resonance rarely occurs for these energetic electrons. The results of test particle simulations indicate that while wave-induced changes in pitch angle and kinetic energy of a single electron are stochastic, the change averaged over all test electrons increases monotonically within the resonance timescale, which implies that resonant scattering is an overall characteristic of energetic electrons under the influence of the artificial whistler waves. Computed resonant scattering rates based on the test particle simulations indicate that aritificial ELF/VLF waves with an observable in situ wave amplitude of ~ 10 pT can drive efficient local pitch angle scattering of energetic electrons at the magnetic equator, thereby contributing considerably to their precipitation loss and magnetospheric electron dynamics. When the waves become highly oblique during the propagation, besides the fundamental first order resonance, higher order resonances can also drive efficient electron scattering. The results support the feasibility of generating artificially ELF/VLF whistler waves for controlled removal of energetic electrons in the Earth radiation belts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.