Abstract

A wealth of experimental data has verified the applicability of the Gouy-Chapman (GC) theory to charged lipid membranes. Surprisingly, a validation of GC by molecular dynamics (MD) simulations has been elusive. Here, we report a test of GC against extensive MD simulations of an anionic lipid bilayer solvated by water at different concentrations of NaCl or KCl. We demonstrate that the ion distributions from the simulations agree remarkably well with GC predictions when information on the adsorption of counterions to the bilayer is incorporated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.