Abstract

From temperature studies at ambient pressure, it was pointed out for several glass-forming liquids that the alpha-relaxation time (tau) can be related to the dc-ionic conductivity (sigma) through the phenomenological fractional Debye-Stokes-Einstein (DSE) equation. In the present paper we test the validity of fractional DSE equation for relaxation data obtained from pressure variable experiments. To this end we carried out broadband dielectric measurements (10 mHz-10 MHz) in a wide range of pressures (0.1-300 MPa). The material under study were N,N-diglycidyl-4-glycidyloxyaniline and N,N-diglycidylaniline. As a result we found that the fractional DSE equation is also obeyed for pressure pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.