Abstract

Using time-resolved charge detection in a double quantum dot, we present an experimental test of the fluctuation theorem. The fluctuation theorem, a result from nonequilibrium statistical mechanics, quantifies the ratio of occurrence of fluctuations that drive a small system against the direction favored by the second law of thermodynamics. Here, these fluctuations take the form of single electrons flowing against the source–drain bias voltage across the double quantum dot. Our results, covering configurations close to as well as far from equilibrium, agree with the theoretical predictions, when the finite bandwidth of the charge detection is taken into account. In further measurements, we study a fluctuation relation that is a generalization of the Johnson–Nyquist formula and relates the second-order conductance to the voltage dependence of the noise. Current and noise can be determined with the time-resolved charge detection method. Our measurements confirm the fluctuation relation in the nonlinear transport regime of the double quantum dot.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call