Abstract

Summary. A large set of published great circle Rayleigh wave phase velocities in the period range 125–350s is used to compare three recent tectonic models (Okal, Leveque, Jordan). Prior to any regionalization, the symmetry property of the great circle integrals is used to obtain a lower limit of the signal/noise ratio in the data. It turns out that the signal is responsible for at least 30 per cent of the data variance in the period range 175–300s. A standard regression method is applied for computing the‘pure path’velocities and the model efficiency is derived from a variance analysis. It is shown that, even at great depth, none of the three models explains more than 60 per cent of the energy due to the long-wavelength lateral heterogeneities (λ6500 km). The three models have nearly the same efficiency for explaining the short-period data (T ∼ 125s). Between 200 and 300s, the higher performance of Okal's model indicates that it is important to separate the subduction zones from the other orogenic zones. By perturbing the lateral extension of the subduction zones, it comes out that they constitute on both sides of the subducting slabs wider anomalies than often assumed, suggesting large downgoing flows. On the contrary, the effect of surface features such as marginal seas are restricted to a close region in front of the trenches. Finally, the anomalous ellipticity values deduced directly from great circle data are partly explained by a coupling between tectonics and ellipticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.