Abstract
Abstract Traditional nonparametric tests, such as the Kolmogorov—Smirnov test and the Cramer—Von Mises test, are based on the empirical distribution functions. Although these tests possess root-n consistency, they effectively use only information contained in the low frequencies. This leads to low power in detecting fine features such as sharp and short aberrants as well as global features such as high-frequency alternations. The drawback can be repaired via smoothing-based test statistics. In this article we propose two such kind of test statistics based on the wavelet thresholding and the Neyman truncation. We provide extensive evidence to demonstrate that the proposed tests have higher power in detecting sharp peaks and high frequency alternations, while maintaining the same capability in detecting smooth alternative densities as the traditional tests. Similar conclusions can be made for two-sample nonparametric tests of distribution functions. In that case, the traditional linear rank tests such as th...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.