Abstract

Taking into consideration of a fractal structure for the black hole horizon, Barrow argued that the area law of entropy get modified due to quantum-gravitational effects. Accordingly, the corrected entropy takes the form S∼A1+Δ2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$S\\sim A^{1+\\frac{\\Delta }{2}}$$\\end{document}, where 0≤Δ≤1,\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$0\\le \\Delta \\le 1,$$\\end{document} indicates the amount of the quantum-gravitational deformation effects. By considering the modified Barrow entropy associated with the apparent horizon, the Friedmann equations get modified as well. We show that considering a universe filled with the matter and cosmological constant Λ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Lambda $$\\end{document}, it is possible to determine the amount of deviation from standard cosmology by reconstructing the parameter δ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\delta $$\\end{document} in terms of curvature parameters {q,Q,Ωk}\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\{q,Q,\\Omega _{k}\\}$$\\end{document} as Δ=(Q-1-Ωk)(1+Ωk)(1+Ωk+q)2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Delta =\\frac{(Q-1-\\Omega _k)(1+\\Omega _k)}{(1+\\Omega _k+q)^{2}}$$\\end{document}. Here, q is the deceleration parameter and Q is the third derivative of scale factor. This relation provides some advantages. The first is that it indicates that there is profound connection between quantum-gravitational deformation effects and curvature effects, for Ωk≃0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Omega _k\\simeq 0$$\\end{document} the pair {q,Q}\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\{q,Q\\}$$\\end{document} can be regarded as deviation curvature factors which reflect the amount of deviation of the model from the standard model. The second interesting feature is that, since this pair are observational parameters which can be directly measured in a model independent approach, they can be regarded as powerful tools to enable us to put constraint on parameter Δ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Delta $$\\end{document} and test the Barrow entropy model. Our analysis predicts the value for Q0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$Q_{0}$$\\end{document} which is slightly deviates from 1 as (Q0-1)<0.001\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(Q_{0}-1)<0.001$$\\end{document}. This can be a relativity well target and criterion for theoretical and observational measurements of parameter Q0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$Q_{0}$$\\end{document}. Hence we can hope and wait the improvement of the high redshift data in the future to support it.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call