Abstract

Barriers are an effective mechanism for managing invasive species, such as sea lamprey in the Laurentian Great Lakes but are detrimental because they limit the migration of desirable, native species. Fish passage technologies that selectively pass desirable species while blocking undesirable species are needed. Optical sorting tools, combined with newly developed computer learning algorithms, could be used to identify invasive species from high-resolution imagery and potentially isolate them from an assortment of the Great Lakes fishes. Many existing barriers lack fishways, and optical sorting may require fish to be dewatered for image capture. The Archimedes screw, a device originating from 234 BCE, offers the potential to continuously lift fish and water over low-head barriers or into an optical sorting device. To test the efficacy of an Archimedes screw and fish lifting to capture and pass Great Lakes fishes, we built a field-scale prototype and installed it at the Cheboygan Dam, Michigan in the USA in 2021. The fish lift safely transported 704 fish (688 of which were suckers (Catostomidae)) in 11 days. The passage of the suckers through the fish lift increased with the water temperature and attraction flow. There were no observed injuries in the transported fish or mortalities in a subset of suckers held post-transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call