Abstract

Pulse oximeters are used for the non-invasive monitoring of arterial blood hemoglobin oxygen saturation. This technique is based on the time variable optical attenuation by a vascular bed due to the cardiac pumping action (photoplethysmography) and the differential optical absorption of the oxy- and deoxy-hemoglobin. The photoplethysmographic (PPG) signals measured at two specific wavelengths are decomposed into its variable or pulsating component (EAC) and the constant or non-pulsating component (EDC) for deriving a parameter related to the arterial blood oxygen saturation (So2). Previously it has been reported a signal processing algorithm for a near infrared (NIR) laser diodes based transmittance pulse oximetry system. The main difficulties in the extraction of the information from the PPG signals are the small value of the signals variation related to their constant values, and the presence of artefacts caused by macro- and micro- movements of the part under analysis. The proposed algorithm permits the numeric separation of the variable and constant parts of the signals for both wavelengths. The EDC is obtained by a low pass filtering, and EAC by a pass-band one, followed by a non-linear filtering based on histogram reduction. In the present work is exposed the analysis of the influence of processing parameters like filters cut-off frequencies and histogram reduction percentage, on the derived So2 values. The test has been conducted both on real and simulated PPG signals. The real PPG has been recorded through experimental studies with human subjects using the NIR laser diodes based transmittance pulse oximetry system. The sources of artefacts and noise in the laser diodes PPG signals are discussed.© (2003) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call