Abstract

Abstract A planetary boundary-layer (PBL) parameterization based on the generalized similarity theory (GST) was tested in tropical cyclone models. This parameterization, with only one layer, is desired in modeling tropical cyclones for computational speed. The momentum, sensible heat and moisture fluxes are mutually dependent in this parameterization through nondimensional gradient equations. The internal structure of the PBL is determined implicitly through universal functions. In comparison with a complex, one-dimensional, multilayer PBL model, the GST parameterization yields accurate moisture fluxes, but slightly overestimates the momentum flux and underestimates the sensible heal flux. The GST parameterization produces very realistic dynamics, energetics and thermal structure in an axisymmetric tropical cyclone model. This GST parameterization, although unable to treat the diffusion across the PBL inversion, is judged superior to drag coefficient parameterization and is a good alternative to the more ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.