Abstract

Software testing is an essential process to improve software quality in practice. Researchers have proposed several techniques to automate parts of this process. In particular, symbolic execution can be used to automatically generate a set of test inputs that achieves high code coverage.However, most state-of-the-art symbolic execution approaches cannot directly handle programs whose inputs are pointers, as is often the case for C programs. Automatically generating test inputs for pointer manipulating code such as a linked list or balanced tree implementation remains a challenge. Eagerly enumerating all possible heap shapes forfeits the advantages of symbolic execution. Alternatively, for a tester, writing assumptions to express the disjointness of memory regions addressed by input pointers is a tedious and labor-intensive task.This paper proposes a novel solution for this problem: by exploiting type information, disjointness constraints that characterize permissible configurations of typed pointers in byte-addressable memory can be automatically generated. As a result, the constraint solver can automatically generate relevant heap shapes for the program under test. We report on our experience with an implementation of this approach in Pex, a dynamic symbolic execution framework for .NET. We examine two different symbolic representations for typed memory, and we discuss the impact of various optimizations.KeywordsTest input generationsymbolic executionpointers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.