Abstract

Test generation algorithm based on the SVM (support vector machine) generates test signals derived from the sample space of the output responses of the analog DUT. When the responses of the normal circuits are similar to those of the faulty circuits (i.e., the latter have only small parametric faults), the sample space is mixed and traditional algorithms have difficulty distinguishing the two groups. However, the SVM provides an effective result. The sample space contains redundant data, because successive impulse-response samples may get quite close. The redundancy will waste the needless computational load. So we propose three difference methods to compress the sample space. The compressing sample space methods are Equidistant compressional method, k-nearest neighbors method and maximal difference method. Numerical experiments prove that maximal difference method can ensure the precision of the test generation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.