Abstract

While current quantum computers, referred to as Noisy Intermediate-Scale Quantum (NISQ) computers, are expected to be beneficial for different applications, they are prone to different types of errors. In order to enhance the reliability of quantum systems, noise-aware quantum compilers are used to generate physical quantum circuits to be executed on NISQ computers. The quantum hardware is calibrated very frequently and its error rates are computed accordingly. Based on the hardware error rates, a quantum compiler allocates physical qubits and schedules quantum operations. However, error rates may change post-calibration. To incorporate dynamic error rates into quantum circuit compilation with minimum cost, we propose a Machine Learning (ML)-based scheme to detect the incorrect output of the quantum circuit and predict the Probability of Successful Trials (PST) with high accuracy. Our approach can verify the error rates of the quantum hardware and validate the correctness of the extracted quantum circuit output. We provide a case study of our ML-based reliability models using IBM Q16 Melbourne quantum computer. Our results show that the proposed scheme achieves a very high prediction accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call