Abstract

The quality of test data has an important impact on the effect of software testing, so test data generation has always been a key task for finding the potential faults in program code. In structural testing, the primary goal is to cover some kinds of structure elements with some specific inputs. Search-based test data generation provides a rational way to handle this difficult problem. In the past, some well-known meta-heuristic search algorithms have been successfully utilized to solve this issue. In this paper, we introduce a variant of genetic algorithm (GA), called quantum-inspired genetic algorithm (QIGA), to generate the test data with stronger coverage ability. In this new algorithm, the traditional binary bit is replaced by a quantum bit (Q-bit) to enlarge the search space so as to avoid falling into local optimal solution. On the other hand, some other strategies such as quantum rotation gate and catastrophe operation are also used to improve algorithm efficiency and quality of test data. In addition, experimental analysis on eight real-world programs is performed to validate the effectiveness of our method. The results show that QIGA-based method can generate test data with higher coverage in much smaller convergence generations than GA-based method. More importantly, our proposed method is more robust for algorithm parameter change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.