Abstract

The test access mechanism (TAM) is an important element of test architectures for embedded cores and is responsible for on-chip test pattern transport from the source to the core under test to the sink. Efficient TAM design is of critical importance in system-on-chip integration since it directly impacts testing time and hardware cost. In this paper, an efficient genetic algorithm for designing test access architectures while investigating test bus sizing and concurrently assigning cores to test buses is proposed. Experimental results are presented to demonstrate that the proposed TAM optimization methodology provides efficient test bus designs with minimum testing time while outperforming reported techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.