Abstract

The triboelectric nanogenerator (TENG) has been attracting attention for electronic devices and sensors consuming low power. Among the few operating modes of the TENG, the rotation-based TENG provides a more continuous and smoother output than the linear-motion-based TENG. To evaluate the output performance of the rotation-based TENG precisely and quantitatively, a test bed that adjusts the eccentricity error, tilt angle error, contact force, and rotational speed is proposed. The test bed includes a motor, torque sensor, 2-axis planar stage, 2-axis tilting stage, 1-axis vertical stage, 3-degree-of-freedom force/torque (3-DOF F/T) sensor, and voice coil actuator. With the proposed test bed, the effects of the eccentricity error, tilt angle error, contact force, and rotational speed on the electrical output performance of the rotation-based TENG are analyzed. The test bed is expected to be used for quantitative performance analysis and comparative study of various rotation-based TENGs, and it can help improve the performance and reliability of rotation-based TENGs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call