Abstract

The high luminosity upgrade of the Large Hadron Collider (HL-LHC) at CERN is expected to provide instantaneous luminosities of 5×1034cm−2s−1. The high luminosities expected at the HL-LHC will be accompanied by a factor of 5–10 more pileup compared with LHC conditions in 2015, further increasing the challenge for particle identification and event reconstruction. Precision timing allows us to extend calorimetric measurements into such a high density environment by subtracting the energy deposits from pileup interactions. Calorimeters employing silicon as the active component have recently become a viable choice for the HL-LHC and future collider experiments which face very high radiation environments. In this paper, we present studies of basic calorimetric and precision timing measurements using a prototype composed of tungsten absorber and silicon sensor as the active medium. We show that for the bulk of electromagnetic showers induced by electrons in the range of 20–30GeV, we can achieve time resolutions better than 25ps per single pad sensor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.