Abstract
Superconducting shim coils are frequently used in high-field magnetic resonance imaging or nuclear magnetic resonance system for their high sensitivity and shimming strength. The design of superconducting shim coils is based on the spherical harmonic decomposition, and each shim coil is normally dedicated for correcting one specific harmonic component. Conventional superconducting shim coil with a saddle loop has observable winding error near the corner, which gives rise to arc transformation when winding layer by layer. Simulation analysis shows that the arc corner transformation will induce the magnetic field deviation by more than double of the theoretical design ±1%, which may be up to ±3% after real winding. An improved shim coil design method with a quasisaddle geometry was proposed to correct the winding error. With the consideration of both the rounded corner of the saddle loop and the arc side, the new design offers the magnetic field deviation within ±1%. In addition to reducing the winding error, the proposed design also facilitates the winding process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.