Abstract

The low surface brightness Universe holds clues to the first formation of galaxies. Specifically, the shape and morphology of local stellar haloes have encoded in them the early formation history of their parent galaxies. Early progenitor galaxies were absorbed by the dark halo and scattered their stars in a diffuse halo around the main galaxy. If the accretion event was relatively recent, it may show as a coherent stream of stars within the halo. in addition, the low-mass, low-surface brightness satellite galaxies, perhaps the ultradiffuse galaxies recently reported would help solve the Missing Dwarf Problem, the apparent over-prediction of $\Lambda$CDM models of the number of satellite galaxies around a Milky Way Halo. However low surface brightness is not what most telescopes are optimized for, most are best for resolving point sources and not sensitivity for large-scale low-light. To be sensitive to the low surface brightness Universe, a telescope needs a simple, unobstructed light path (disfavoring mirrors), fast optics (low f/D), and relatively coarse sampling (big pixels). Exceptions are the superb Dragonfly and Huntsman telescopes which are purposely designed to be sensitive to low surface brighnesses. Similarly designed, if not with low surface brightness in mind is the successfully launched TESS satellite. We show in this Research Note that the envisaged total exposure times and optical setup are near-ideal for low surface brightness work in the local Universe. With combined TESS imaging, one can model the stellar halo surrounding a galaxy. Technical challenges include the image quality, zodiacal and Galactic cirrus background light, PSF characterization and subtraction. Once accounted for with a processing pipeline, one can model the stellar halo for all nearby galaxies and to search for substructure in these haloes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.