Abstract

Abstract Micromixers are the devices which have the ability to mix liquids uniformly. However, a Tesla valve has the potential for micromixer development because of its simple structure and special flow mechanism. In this study, a numerical simulation analysis of a new Tesla-type micromixer was designed by placing a flow plate into a micromixer, which has a contact angle of 30° with the channel wall. The optimization of the geometric parameter, aspect ratio (AR) and the Reynolds number (Re) effect is discussed. The results show that the optimal geometric parameters of the unit Tesla-type micromixer are θ1 = 45°, θ2 = 30°, A = 0.3 mm, B = 0.22 mm, C = 0.3 mm, D = 0.25 mm, and the mixing efficiency can achieve εmixing = 0.953 by passing three-unit Tesla-type micromixers (inverse-type, Re = 1, AR = 1). The Tesla-type micromixers designed in this study, which have a lower pressure drop and a higher mixing performance at a low Reynolds number, can contribute to the application of biomedical chips and chemical reactors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call