Abstract

Pseudomonas aeruginosa is a versatile Gram-negative pathogen with intricate intracellular regulatory networks that enable it to adapt to and flourish in a variety of biotic and abiotic habitats. However, the mechanism permitting the persistent survival of P. aeruginosa within host tissues and causing chronic symptoms still remains largely elusive. By using in situ RNA sequencing, here we show that P. aeruginosa adopts different metabolic pathways and virulence repertoires to dominate the progression of acute and chronic lung infections. Notably, a virulence factor named TesG, which is controlled by the vital quorum-sensing system and secreted by the downstream type I secretion system, can suppress the host inflammatory response and facilitate the development of chronic lung infection. Mechanically, TesG can enter the intracellular compartment of macrophages through clathrin-mediated endocytosis, competitively inhibit the activity of eukaryotic small GTPase and thus suppress subsequent neutrophil influx, cell cytoskeletal rearrangement of macrophages and the secretion of cytokines and chemokines. Therefore, the identification of TesG in this study reveals a type I secretion apparatus of P. aeruginosa that functions during the host-pathogen interaction, and may open an avenue for the further mechanistic study of chronic respiratory diseases and the development of antibacterial therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.