Abstract

Tertiary treatments are required to permit safe reuse of wastewater. The performance of a new biological tertiary treatment based on the filtration by a population of Daphnia magna was studied and compared with the performance of other conventional tertiary treatments such as coagulation-flocculation, settling tank, disc filtration, sand filtering and ultraviolet (UV) light. The analysis was based on the efficiency in the particle removal and Escherichia coli inactivation. The Daphnia magna treatment reduced the concentration of particles with diameters below 30 μm by 35%, depending on abiotic parameters such as water temperature and the hydraulic retention time (HRT). The Daphnia magna filtration increased with water temperature for water temperatures >20 °C, while it remained constant for water temperatures <20 °C. Lower HRTs induced the growth of the Daphnia magna population, maintaining the same water quality. Furthermore, the Daphnia magna treatment inactivated E. coli in 1.2 log units. This inactivation was six times larger than that obtained by the conventional macrofiltration systems analyzed, although lower than the inactivation attained by UV light, which ranged between 1.5 and 4 log units.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.