Abstract

The Oregon-Washington continental margin was the site of a deep marginal basin in which more than 7000 m of Tertiary sedimentary and volcanic rocks accumulated. Oceanic basalts of Paleocene to early Eocene age form the basin floor and are interpreted to represent eruptions in an elongate trough formed by rifting of the continental margin. Middle Eocene turbidite sandstone overlapped both the oceanic crust and the pre-Tertiary rocks of the Klamath Mountains, thus indicating that suturing of the Coast Range-Olympic terrane to North America was about 50 Ma. Oblique convergence between the Farallon and North American plates occurred during most of the middle Eocene to middle Miocene. Sedimentation, punctuated by episodes of volcanism, was essentially continuous in a forearc basin whose axis lay along the present inner continental shelf. The oblique interaction between the plates was interrupted by two periods of more head-on convergence during the middle late Eocene and late middle Miocene. Thick accretionary melange wedges of Eocene and of late Oligocene to late middle Miocene ages were formed during these strongly compressive episodes. Geochemical analyses indicate that the accretionary melange wedges, which crop out along the west side of the Olympic Peninsula and beneath the adjacent shelf, have themore » highest potential for oil and gas generation. They are the source rocks for numerous gas seeps and oil and gas shows in exploratory wells, and for the 12,000 bbl of 38.9 /sup 0/ API paraffin-based oil produced from a well drilled on the southwest Washington coast. Potential exploration targets exist where the Eocene and Oligocene-Miocene melanges are underplated to a position beneath the lower Eocene oceanic basalt. Hydrocarbons generated in the melanges could migrate upward into structures in strata that overlie the basalt in the upper plate.« less

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call