Abstract

A three-dimensional biofilm-electrode reactor (3D-BER) was constructed to facilitate the tertiary denitrification of the secondary effluent of wastewater treatment plants (SEWTP) under 12 mA and in the absence of a carbon source. The TN removal efficiency was 63.8%. The path of the formation and transformation of nitrogen, the relationship between the TN and COD removal rate and the relative concentration and composition of organic matter in the influent and effluent were analyzed to clarify the possible pathways of N and C transformation in the 3D-BER system. Under the action of an electric current, 4.4 mg NH4+-N·L−1 and 17.7 mg COD·L−1 accumulated in the 3D-BER system, and the removal rates of TN and COD were strongly and positively correlated (R2 = 0.9353). The microorganisms in the 3D-BER system under the action of electric current secreted organic matter, some of which (humic acid and microbial metabolites) could be further electrolyzed by microorganisms into bioavailable organic matter for heterotrophic denitrification. Partially dissolved organic matter (DOM, tryptophan aromatic protein, humic acid and microbial metabolites) in the SEWTP could be hydrolyzed under the action of the electric current in the 3D-BER system and consisted of bioavailable organic matter for heterotrophic denitrification. The contribution of heterotrophic denitrification to TN removal was greater than 11.7%. Therefore, the 3D-BER system removed a portion of DOM through microbial electrohydrolysis and promoted the coupling of hydrogen autotrophic denitrification and heterotrophic denitrification to enhance the effectiveness of nitrogen removal in SEWTP. Overall, this technique is effective for enhancing tertiary denitrification in SEWTP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.