Abstract

We have conducted an extensive computational exploration of how the gas-phase tert-butyl cation affinities (t-BCA) of archetypal anionic and neutral bases across the periodic system are affected by stepwise replacement of all hydrogen atoms at the protophilic center with methyl substituents. This study was conducted using zeroth-order regular approximation relativistic density functional theory (DFT) at the BP86/QZ4P//BP86/TZ2P level. The trends are interpreted in terms of the steric effects of methyl substituents at the protophilic center of the anionic (Me(m)XH(n-1-m)(-)) and neutral bases (Me(m)XH(n-m)). Besides insight, this work also provides an intrinsically consistent set of values of the 298 K tert-butyl cation affinities of all (partially) methyl-substituted or unsubstituted bases constituted by maingroup-element hydrides of groups 14-16 in anionic cases (Me(m)XH(n-1-m)(-)) and groups 15-17 in neutral ones (Me(m)XH(n-m)) along periods 2-6. The effect of long-range dispersion (van der Waals) interactions was estimated through dispersion-corrected density functional theory (DFT-D3) at the BP86-D3/QZ4P//BP86/TZ2P level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.