Abstract
Recent research suggests that secondary production in aquatic systems can be driven by inputs of energy from terrestrial sources. Temporary forest ponds appear to be unproductive ecosystems that are reliant upon allochthonous inputs of energy to support secondary production, but the functioning of these systems has not been well quantified. To assess the metabolic state of this type of ecosystem as well as to quantify the importance of terrestrial subsidies of carbon to ecosystem function, we conducted an experiment in which we manipulated the amount of leaf litter in ponds. Litter was either removed or removed and replaced (that is, control) from the dry basins of ponds immediately after leaf abscission. Once the ponds filled, we monitored net ecosystem production (NEP) on a biweekly basis from 9 April to 27 May 2002. All ponds were consistently net heterotrophic; however, NEP was significantly less negative in removal ponds. Furthermore, removal ponds also had lower levels of respiration (R) and higher dissolved oxygen levels than control ponds. The removal of litter had no effect on gross primary production, indicating that the difference in NEP between treatments was driven by the change in R. Therefore, it appears that terrestrial inputs of organic carbon support heterotrophic respiration in these ponds, and that the endogenous production of carbon is insufficient to support secondary production.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.