Abstract

The scalar–tensor–vector–gravity (STVG), a prototype of modified gravity developed by Moffat, can correctly explain galaxy rotation curves, cluster dynamics, Bullet Cluster phenomena and cosmological data without invoking the observationally elusive general relativistic (GR) dark matter. Further, recent observations of neutron star masses are shown to defy some GR predictions, whereas STVG turns out to be more consistent with those observations. These successes indicate that STVG could be a potential candidate for a new theory of gravity. However, an important question concerns the possible range of values of the STVG dimensionless parameter [Formula: see text] imposed by various physical scenarios. In the literature, the range [Formula: see text] corresponding to different central source masses has been suggested. We show here that the [Formula: see text] can be considerably constrained into the range [Formula: see text] assuming that the updated GPS fluctuation does not exceed the [Formula: see text]-dependent correction to the terrestrial Sagnac delay.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call