Abstract

Nowadays, there is an increasing demand for detailed geometrical representation of the existing cultural heritage, in particular to improve the comprehension of interactions between different phenomena and to allow a better decisional and planning process. The LiDAR technology (Light Detection and Ranging) can be adopted in different fields, ranging from aerial applications to mobile and terrestrial mapping systems. One of the main target of this study is to propose an integration of innovative and settled inquiring techniques, ranging from the reading of the technological system, to non-destructive tools for diagnosis and 3D metric modeling of buildings heritage. Many inquiring techniques, including Terrestrial Laser Scanner (TLS) method, have been exploited to study the main room of the Valentino Castle in Torino. The so-called “Salone delle Feste”, conceived in the XVIIth century under the guidance of Carlo di Castellamonte, has been selected as a test area. The beautiful frescos and stuccoes of the domical vault are sustained by a typical Delorme carpentry, whose span is among the largest of their kind. The dome suffered from degradation during the years, and a series of interventions were put into place. A survey has revealed that the suspender cables above the vault in the region close to the abutments have lost their tension. This may indicate an increase of the vault deformation; therefore a structural assessment of the dome is mandatory. The high detailed metric survey, carried out with integrated laser scanning and digital close range photogrammetry, reinforced the structural hypothesis of damages and revealed the deformation effects. In addition, the correlation between the survey-model of the intrados and of the extrados allowed a non-destructive and extensive determination of the dome thickness. The photogram-metrical survey of frescos, with the re-projection of images on vault surface model (texture mapping), is purposed to exactly localize formers restoration and their signs on frescos continuity. The present paper illustrates the generation of the 3D high-resolution model and its relations with the results of the structural survey; both of them support the Finite Element numerical simulation of the dome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.