Abstract
Abrupt cooling events are features of Holocene climate and may recur in the future. We use lake records from Hawes Water, NW England, to quantify the impact of two prominent early Holocene climatic events. Subdecadal oxygen isotope records from sedimentary carbonate (18δOc), dated using thermal ionization mass spectrometry (TIMS) U-series analyses, provide evidence for abrupt cold events, lasting ∼50 and ∼150 yr at 9350 and 8380 yr ago, which correlate with the 9.3 ka and 8.2 ka events recognized in Greenland ice cores. At Hawes Water, mean July air temperatures, inferred from chirono-mid assemblages, decreased by ∼1.6 °C during each event. Calculations show that the isotopic excursions were dominantly caused by decreases in the isotopic composition of meteoric precipitation (18δOp) by ∼1.3‰; this is interpreted as a direct downstream response to cooling and freshening of northeast Atlantic surface water by melting ice sheets. Intermediate in magnitude between events observed in Greenland and central Europe, the effects are consistent with a partial shutdown of the North Atlantic thermohaline circulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.