Abstract

Due to expansive soils and high slopes, the deep excavated channel section of the China South–North Water-Diversion Middle-Route Project has a certain risk of landslide disaster. Therefore, examining the deformation law and mechanism of the channel slope in the middle-route section of the project is an extreme necessity for safe operation. However, the outdated monitoring method limits research on the surface deformation law and mechanism of the entire deep excavation channel section. For these reasons, we introduced a novel approach that combines SBAS-InSAR and GNSS, enabling the surface domain monitoring of the study area at a regional scale as well as real-time monitoring of specific target regions. By using SBAS-InSAR technology and leveraging 11-view high-resolution TerraSAR-X data, we revealed the spatiotemporal evolution law of surface deformations in the channel slopes within the study area. The results demonstrate that the predominant deformation in the study area was uplifted, with limited evidence of subsidence deformation. Moreover, there is a distinct region of significant uplift deformation, with the highest annual uplift rate reaching 19 mm/y. Incorporating GNSS and soil-moisture-monitoring timeseries data, we conducted a study on the correlation between soil moisture and the three-dimensional deformation of the ground surface, revealing a positive correlation between the soil moisture content and vertical displacement of the channel slope. Furthermore, combining field investigations on surface uplift deformation characteristics, we identified that the main cause of surface deformation in the study area was attributed to the expansion of the soil due to water absorption in expansive soils. The research results not only revealed the spatiotemporal evolution law and mechanism of the channel slope deformation in the studied section of the deep excavation channel but also provide successful guidance for the prevention and control of channel slope-deformation disasters in the study area. Furthermore, they offer effective technical means for the safe monitoring of the entire South–North Water-Diversion Middle-Route Project and similar long-distance water-conveyance canal projects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.