Abstract

Abstract. This article presents the use of new remote sensing data acquired from airborne full-waveform lidar systems for hydrological applications. Indeed, the knowledge of an accurate topography and a landcover classification is a prior knowledge for any hydrological and erosion model. Badlands tend to be the most significant areas of erosion in the world with the highest erosion rate values. Monitoring and predicting erosion within badland mountainous catchments is highly strategic due to the arising downstream consequences and the need for natural hazard mitigation engineering. Additionally, beyond the elevation information, full-waveform lidar data are processed to extract the amplitude and the width of echoes. They are related to the target reflectance and geometry. We will investigate the relevancy of using lidar-derived Digital Terrain Models (DTMs) and the potentiality of the amplitude and the width information for 3-D landcover classification. Considering the novelty and the complexity of such data, they are presented in details as well as guidelines to process them. The morphological validation of DTMs is then performed via the computation of hydrological indexes and photo-interpretation. Finally, a 3-D landcover classification is performed using a Support Vector Machine classifier. The use of an ortho-rectified optical image in the classification process as well as full-waveform lidar data for hydrological purposes is finally discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.