Abstract
Let X be a smooth projective variety and f:X→Pr a morphism birational onto its image. We define the Terracini loci of the map f. Most results are only for the case dimX=1. With this new and more flexible definition, it is possible to prove strong nonemptiness results with the full classification of all exceptional cases. We also consider Terracini loci with restricted support (solutions not intersecting a closed set B⊊X or solutions containing a prescribed p∈X). Our definitions work both for the Zariski and the euclidean topology and we suggest extensions to the case of real varieties. We also define Terracini loci for joins of two or more subvarieties of the same projective space. The proofs use algebro-geometric tools.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.