Abstract

Three new building blocks containing the electron-donor fused-ring motifs carbazole, dithienosilole (DTS) and dithienopyrrole (DTP) and the 2,2′:6′,2″-terpyridine electron-acceptor motif were designed and synthesized. Directed by transition metal ions, the self-assembly of the building blocks triggered polymerization to form the corresponding metallo-supramolecular polymers PCzTPY, PSiTPY and PNTPY, respectively. The UV–vis absorption maxima of the building blocks occur at long wavelengths (351, 368 and 430 nm for CzTPY, SiTPY and NTPY, respectively), which arises from intramolecular charge transfer (ICT) transitions. However, the absorption maxima of their corresponding metallo-supramolecular polymers are clearly red-shifted (to 394, 431 and 509 nm for PCzTPY, PSiTPY and PNTPY, respectively), which is caused by the incorporation of the transition metal ion into the backbones of the target polymers. Based on the above strategies, the resulting metallo-polymers exhibit reduced energy gaps, which are 2.07, 1.97 and 1.56 eV for the PCzTPY, PSiTPY and PNTPY metallo-supramolecular polymers, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.