Abstract
Terpyridine (tpy)-based 3D discrete metallosupramolecular architectures, which are often inspired by polyhedral geometry and the biological structures found in nature, have drawn significant attention from the community of metallosupramolecular chemistry. Because of the linear tpy-M(II)-tpy connectivity, the creation of sophisticated 3D metallosupramolecules based on tpy remains a formidable synthetic challenge. Nevertheless, with recent advancement in ligand design and self-assembly, diverse 3D metallosupramolecular polyhedrons, such as Platonic solids, Archimedean solids, prims as well as Johnson solids, have been constructed and their potential applications have been explored. This review summarizes the progress on tpy-based discrete 3D metallosupramolecules, aiming to shed more light on the design and construction of novel discrete architectures with molecular-level precision through coordination-driven self-assembly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.