Abstract

AbstractLow conversion kinetics of terpolymerization of N,N‐dimethylaminoethyl methacrylate (DMAEM) and dodecyl methacrylate (DDMA) with methyl methacrylate (MMA) or styrene (ST) was investigated. Reactions were performed at 70°C, in toluene solutions, using peroxide initiator. The interdependence between terpolymer and monomer feed composition was successfully described by Alfrey‐Goldfinger equation and the unitary, binary, and ternary azeotropes were calculated. In MMA‐containing system, the wide pseudoazeotropic region with existence of true azeotropic point was observed and experimentally confirmed at the DMAEM:MMA:DDMA molar ratio of 56:41:3. In the ST‐containing system compositional heterogeneity was significant, more than 10 mol%. Required copolymerization reactivity ratios were determined by linear and nonlinear methods. The glass transition temperatures of synthesized terpolymers are found to be between those of the corresponding homopolymers and relative to their content. Increase in the MMA or ST contents and decrease in the DDMA content in terpolymers results in an increase in their glass transition temperatures. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call