Abstract

Cellular oxygen sensing is required for hypoxia-inducible factor-1alpha stabilization, which is important for tumor cell survival, proliferation, and angiogenesis. Here we find that terpestacin, a small molecule previously identified in a screen of microbial extracts, binds to the 13.4-kDa subunit (UQCRB) of mitochondrial Complex III, resulting in inhibition of hypoxia-induced reactive oxygen species generation. Consequently, such inhibition blocks hypoxia-inducible factor activation and tumor angiogenesis in vivo, without inhibiting mitochondrial respiration. Overexpression of UQCRB or its suppression using RNA interference demonstrates that it plays a crucial role in the oxygen sensing mechanism that regulates responses to hypoxia. These findings provide a novel molecular basis of terpestacin targeting UQCRB of Complex III in selective suppression of tumor progression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.