Abstract
Terpenes are a multifarious group of secondary compounds present throughout the living world that function primarily in defence, or otherwise in regulating interactions between an organism and its environment. Terpene synthases (TPS) are a mid-sized gene family whose diversity and make-up reflects a plant’s ecological requirements and unique adaptive history. Here we catalogue TPS in Melaleuca alternifolia and examine lineage-specific expansion in TPS relative to other sequenced Myrtaceae. Overall, far fewer (37) putative TPS genes were identified in M. alternifolia compared with Eucalyptus grandis (113) and E. globulus (106). The number of genes in clade TPS-b1 (12), which encode enzymes that produce cyclic monoterpenes, was proportionally larger in M. alternifolia than in any other well-characterised plant. Relative to E. grandis, the isoprene-/ocimene-producing TPS-b2 clade in M. alternifolia tended to be proportionally smaller. This suggested there may be lineage-specific subfamily change in Melaleuca relative to other sequenced Myrtaceae, perhaps as a consequence of its semi-aquatic evolutionary history.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.