Abstract

Natural variation in ungulate browsing behavior interferes with the understanding of plant morphological and biochemical responses to herbivory. To investigate mechanisms for recovery from herbivory, we examined growth patterns and biosynthesis of terpenoids under simulated browse (three clipping intensities) and supplemental mineral nutrition (four levels of controlled-release fertilization) for Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco], western hemlock (Tsuga heterophylla Raf. Sarg.), and western red-cedar (Thuja plicata Donn ex D. Don) seedlings on a reforestation site in Northwestern Oregon, USA, that was fenced to exclude ungulates. Higher clipping intensities increased relative height growth (at cost of diameter growth) for all the species. Only western red-cedar showed a decline in monoterpene concentrations with increasing clipping severity, suggesting prioritization in biosynthesis of terpenoids for this species. Douglas-fir and western hemlock responded to fertilization mostly through increased growth. Western red-cedar growth responses to fertilization were less pronounced, but monoterpene concentrations were 2–3 times higher compared to non-fertilized trees. Douglas-fir and western hemlock browse recovery and responses to fertilization consisted primarily of increased growth, while western red-cedar balanced growth promotion with production of chemical defense compounds. Our data suggests the evolution of species-dependent resource allocation strategies in response to both browse and soil nutrient availability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call