Abstract

Synergistic interactions between 3,4-dihydroxyphenylalanine (Dopa, Y*), cationic residues, and the aromatic rings have been recently highlighted as influential factors that enhance the underwater adhesion strength of mussel foot proteins and their derivatives. In this study, we report the first ever evidence of a cation-catechol-benzene ternary synergy between Y*, lysine (Lys, K), and phenylalanine (Phe, F) in adhesive peptides. We synthesized three hexapeptides containing a different combination of Y*, K, and F, i.e., (KY*)3, (KF)3, and (KY*F)2, respectively, exploring the relationship between the cohesive performance and molecular architecture of peptides. The peptide with the (KY*F)2 sequence displays the strongest underwater cohesion energy of 10.3 ± 0.3 mJ m-2 from direct nanoscale surface force measurements. Combined with molecular dynamics simulation, we demonstrated that there are more bonding interactions (including cation-π, π-π, and hydrogen bond interactions) in (KY*F)2 compared to the other two peptides. In addition, peptide (KY*F)2 still shows the strongest cohesive energies of 7.6 ± 0.7 and 3.7 ± 0.5 mJ m-2 in acidic and high-ionic strength environments, respectively, although the cohesive energy decreases compared to the value in pure water. Our results further explain the underwater cohesion mechanisms combining multiple interactions and offer insights on designing Dopa containing underwater adhesives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.