Abstract
Li-rich antiperovskite (LiRAP) hydroxyhalides are emerging as attractive solid electrolyte (SEs) for all-solid-state Li metal batteries (ASSLMBs) due to their low melting point, low cost, and ease of scaling-up. The incorporation of rotational polyanions can reduce the activation energy and thus improve the Li ion conductivity of SEs. Herein, we propose a ternary rotational polyanion coupling strategy to fasten the Li ion conduction in tetrafluoroborate (BF4-) ion doped LiRAP Li2OHCl. Assisted by first-principles calculation, powder X-ray diffraction, solid-state magnetic resonance and electrochemical impedance spectra, it is confirmed that Li ion transport in BF4- ion doped Li2OHCl is strongly associated with the rotational coupling among OH-, BF4- and Li2-O-H octahedrons, which enhances the Li ion conductivity for more than 1.8 times with the activation energy lowering 0.03 eV. This work provides a new perspective to design high-performance superionic conductors with multi-polyanions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.