Abstract

To overcome the issues related to supercapacitor (SC) electrodes, such as high cost, low specific capacitance (Cs), low energy density (ED), requirements for expensive binder, etc., binderless electrodes are highly desirable. Here, a new ternary nanohybrid is presented as a binder-free SC electrode based on Ni3S2, CoMoS4, and MnO2. A facile two-step hydrothermal route, followed by a short thermal annealing process, is developed to grow amorphous polyhedral structured CoMoS4 and further wrap MnO2 nanowires on Ni foam. This rationally designed binder-free electrode exhibited the highest Cs of 2021 F g−1 (specific capacity of 883.8 C g−1 or 245.5 mAh g−1) at a current density of 1 A g−1 in 1 M KOH electrolyte with a highly porous surface morphology. This electrode material exhibited excellent cycling stability (90% capacitance retention after 4000 cycles) due to the synergistic contribution of individual components and advanced surface properties. Furthermore, an aqueous binder-free asymmetric SC based on this ternary composite exhibited an ED of 20.7 Wh kg−1, whereas a solid-state asymmetric SC achieved an ED of 13.8 Wh kg−1. This nanohybrid can be considered a promising binder-free electrode for both aqueous and solid-state asymmetric SCs with these remarkable electrochemical properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call